You are currently looking at the < v8.2.0 docs (Reason v3.6 syntax edition). You can find the latest API docs here.
(These docs cover all versions between v3 to v8 and are equivalent to the old BuckleScript docs before the rebrand)
MapDict
This module seprate identity from data, it is a bit more verboe but slightly more efficient due to the fact that there is no need to pack identity and data back after each operation
Advanced usage only
t
type t('key, 'value, 'id);
cmp
type cmp('key, 'id) = Belt_Id.cmp('key, 'id);
empty
let empty: t('k, 'v, 'id);
isEmpty
let isEmpty: t('k, 'v, 'id) => bool;
has
let has: (t('k, 'a, 'id), 'k, ~cmp: cmp('k, 'id)) => bool;
cmpU
let cmpU:
(t('k, 'v, 'id), t('k, 'v, 'id), ~kcmp: cmp('k, 'id), ~vcmp: [@bs] (('v, 'v) => int)) => int;
cmp
let cmp: (t('k, 'v, 'id), t('k, 'v, 'id), ~kcmp: cmp('k, 'id), ~vcmp: ('v, 'v) => int) => int;
eqU
let eqU:
(t('k, 'a, 'id), t('k, 'a, 'id), ~kcmp: cmp('k, 'id), ~veq: [@bs] (('a, 'a) => bool)) => bool;
eq
let eq: (t('k, 'a, 'id), t('k, 'a, 'id), ~kcmp: cmp('k, 'id), ~veq: ('a, 'a) => bool) => bool;
eq(m1, m2, cmp)
tests whether the maps m1
and m2
are equal, that is, contain equal keys and associate them with equal data. cmp
is the equality predicate used to compare the data associated with the keys.
findFirstByU
let findFirstByU: (t('k, 'v, 'id), [@bs] (('k, 'v) => bool)) => option(('k, 'v));
findFirstBy
let findFirstBy: (t('k, 'v, 'id), ('k, 'v) => bool) => option(('k, 'v));
findFirstBy(m, p)
uses function f
to find the first key value pair to match predicate p
.
REmodule IntCmp =
Belt.Id.MakeComparable({
type t = int;
let cmp = Pervasives.compare;
});
let s0 = Belt.Map.Dict.fromArray([|(4, "4"), (1, "1"), (2, "2"), (3, "3")|], ~cmp=IntCmp.cmp);
Belt.Map.Dict.findFirstBy(s0, (k, _) => k == 4) == Some((4, "4"));
forEachU
let forEachU: (t('k, 'a, 'id), [@bs] (('k, 'a) => unit)) => unit;
forEach
let forEach: (t('k, 'a, 'id), ('k, 'a) => unit) => unit;
forEach(m, f)
applies f
to all bindings in map m
. f
receives the key as first argument, and the associated value as second argument. The bindings are passed to f
in increasing order with respect to the ordering over the type of the keys.
reduceU
let reduceU: (t('k, 'a, 'id), 'b, [@bs] (('b, 'k, 'a) => 'b)) => 'b;
reduce
let reduce: (t('k, 'a, 'id), 'b, ('b, 'k, 'a) => 'b) => 'b;
reduce(m, a, f)
computes f(kN, dN ... f(k1, d1, a)...)
, where k1 ... kN
are the keys of all bindings in m
(in increasing order), and d1 ... dN
are the associated data.
everyU
let everyU: (t('k, 'a, 'id), [@bs] (('k, 'a) => bool)) => bool;
every
let every: (t('k, 'a, 'id), ('k, 'a) => bool) => bool;
every(m, p)
checks if all the bindings of the map satisfy the predicate p
. Order unspecified
someU
let someU: (t('k, 'a, 'id), [@bs] (('k, 'a) => bool)) => bool;
some
let some: (t('k, 'a, 'id), ('k, 'a) => bool) => bool;
some(m, p)
checks if at least one binding of the map satisfy the predicate p
. Order unspecified
size
let size: t('k, 'a, 'id) => int;
toList
let toList: t('k, 'a, 'id) => list(('k, 'a));
In increasing order.
toArray
let toArray: t('k, 'a, 'id) => array(('k, 'a));
fromArray
let fromArray: (array(('k, 'a)), ~cmp: cmp('k, 'id)) => t('k, 'a, 'id);
keysToArray
let keysToArray: t('k, 'a, 'id) => array('k);
valuesToArray
let valuesToArray: t('k, 'a, 'id) => array('a);
minKey
let minKey: t('k, 'a, 'b) => option('k);
minKeyUndefined
let minKeyUndefined: t('k, 'a, 'b) => Js.undefined('k);
maxKey
let maxKey: t('k, 'a, 'b) => option('k);
maxKeyUndefined
let maxKeyUndefined: t('k, 'a, 'b) => Js.undefined('k);
minimum
let minimum: t('k, 'a, 'b) => option(('k, 'a));
minUndefined
let minUndefined: t('k, 'a, 'b) => Js.undefined(('k, 'a));
maximum
let maximum: t('k, 'a, 'b) => option(('k, 'a));
maxUndefined
let maxUndefined: t('k, 'a, 'b) => Js.undefined(('k, 'a));
get
let get: (t('k, 'a, 'id), 'k, ~cmp: cmp('k, 'id)) => option('a);
getUndefined
let getUndefined: (t('k, 'a, 'id), 'k, ~cmp: cmp('k, 'id)) => Js.undefined('a);
getWithDefault
let getWithDefault: (t('k, 'a, 'id), 'k, 'a, ~cmp: cmp('k, 'id)) => 'a;
getExn
let getExn: (t('k, 'a, 'id), 'k, ~cmp: cmp('k, 'id)) => 'a;
checkInvariantInternal
let checkInvariantInternal: t('a, 'b, 'c) => unit;
remove
let remove: (t('a, 'b, 'id), 'a, ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
remove(m, x)
returns a map containing the same bindings as m
, except for x
which is unbound in the returned map.
removeMany
let removeMany: (t('a, 'b, 'id), array('a), ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
set
let set: (t('a, 'b, 'id), 'a, 'b, ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
set(m, x, y)
returns a map containing the same bindings as m
, plus a binding of x
to y
. If x
was already bound in m
, its previous binding disappears.
updateU
let updateU:
(t('a, 'b, 'id), 'a, [@bs] (option('b) => option('b)), ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
update
let update: (t('a, 'b, 'id), 'a, option('b) => option('b), ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
mergeU
let mergeU:
(
t('a, 'b, 'id),
t('a, 'c, 'id),
[@bs] (('a, option('b), option('c)) => option('d)),
~cmp: cmp('a, 'id)
) =>
t('a, 'd, 'id);
merge
let merge:
(
t('a, 'b, 'id),
t('a, 'c, 'id),
('a, option('b), option('c)) => option('d),
~cmp: cmp('a, 'id)
) =>
t('a, 'd, 'id);
merge(m1, m2, f)
computes a map whose keys is a subset of keys of m1
and of m2
. The presence of each such binding, and the corresponding value, is determined with the function f
.
mergeMany
let mergeMany: (t('a, 'b, 'id), array(('a, 'b)), ~cmp: cmp('a, 'id)) => t('a, 'b, 'id);
keepU
let keepU: (t('k, 'a, 'id), [@bs] (('k, 'a) => bool)) => t('k, 'a, 'id);
keep
let keep: (t('k, 'a, 'id), ('k, 'a) => bool) => t('k, 'a, 'id);
keep(m, p)
returns the map with all the bindings in m
that satisfy predicate p
.
partitionU
let partitionU: (t('k, 'a, 'id), [@bs] (('k, 'a) => bool)) => (t('k, 'a, 'id), t('k, 'a, 'id));
partition
let partition: (t('k, 'a, 'id), ('k, 'a) => bool) => (t('k, 'a, 'id), t('k, 'a, 'id));
partition(m, p)
returns a pair of maps (m1, m2)
, where m1
contains all the bindings of s
that satisfy the predicate p
, and m2
is the map with all the bindings of s
that do not satisfy p
.
split
let split:
(t('a, 'b, 'id), 'a, ~cmp: cmp('a, 'id)) => ((t('a, 'b, 'id), t('a, 'b, 'id)), option('b));
split(x, m)
returns a triple (l, data, r)
, where l
is the map with all the bindings of m
whose key is strictly less than x
; r
is the map with all the bindings of m
whose key is strictly greater than x
; data
is None
if m
contains no binding for x
, or Some(v)
if m
binds v
to x
.
mapU
let mapU: (t('k, 'a, 'id), [@bs] ('a => 'b)) => t('k, 'b, 'id);
map
let map: (t('k, 'a, 'id), 'a => 'b) => t('k, 'b, 'id);
map(m, f)
returns a map with same domain as m
, where the associated value a
of all bindings of m
has been replaced by the result of the application of f
to a
. The bindings are passed to f
in increasing order with respect to the ordering over the type of the keys.
mapWithKeyU
let mapWithKeyU: (t('k, 'a, 'id), [@bs] (('k, 'a) => 'b)) => t('k, 'b, 'id);
mapWithKey
let mapWithKey: (t('k, 'a, 'id), ('k, 'a) => 'b) => t('k, 'b, 'id);