API / Belt / MutableSetInt

You are currently looking at the < v8.2.0 docs (Reason v3.6 syntax edition). You can find the latest API docs here.

(These docs cover all versions between v3 to v8 and are equivalent to the old BuckleScript docs before the rebrand)

MutableSetInt

This module is Belt.MutableSet specialized with key type to be a int type. It is more efficient in general, the API is the same with Belt.MutableSet except its key type is fixed, and identity is not needed (using the built-in one).

value

type value = int;

The type of the set elements

t

type t;

Type of the sets.

make

let make: unit => t;

Returns empty set.

RE
let set = Belt.MutableSet.Int.make();

fromArray

let fromArray: array(value) => t;

Creates new set from array of elements.

RE
let s0 = Belt.MutableSet.Int.fromArray([|1, 3, 2, 4|]) s0->Belt.MutableSet.Int.toArray; /* [|1, 2, 3, 4|] */

fromSortedArrayUnsafe

let fromSortedArrayUnsafe: array(value) => t;

The same as [fromArray][#fromarray] except it is after assuming the input array is already sorted.

copy

let copy: t => t;

Returns copy of a set.

RE
let s0 = Belt.MutableSet.Int.fromArray([|1, 3, 2, 4|]) let copied = s0->Belt.MutableSet.Int.copy; copied->Belt.MutableSet.Int.toArray /* [|1, 2, 3, 4|] */

isEmpty

let isEmpty: t => bool;

Checks if set is empty.

RE
let empty = Belt.MutableSet.Int.fromArray([||]); let notEmpty = Belt.MutableSet.Int.fromArray([|1|]); Belt.MutableSet.Int.isEmpty(empty); /* true */ Belt.MutableSet.Int.isEmpty(notEmpty); /* false */

has

let has: (t, value) => bool;

Checks if element exists in set.

RE
let set = Belt.MutableSet.Int.fromArray([|1, 4, 2, 5|]); set->Belt.MutableSet.Int.has(3) /* false */ set->Belt.MutableSet.Int.has(1) /* true */

add

let add: (t, value) => unit;

Adds element to set. If element existed in set, value is unchanged.

RE
let s0 = Belt.MutableSet.Int.make(); s0->Belt.MutableSet.Int.add(1); s0->Belt.MutableSet.Int.add(2); s0->Belt.MutableSet.Int.add(2); s0->Belt.MutableSet.Int.toArray; /* [|1, 2|] */

addCheck

let addCheck: (t, value) => bool;

mergeMany

let mergeMany: (t, array(value)) => unit;

Adds each element of array to set. Unlike add, the reference of return value might be changed even if all values in array already exist in set

RE
let set = Belt.MutableSet.Int.make(); set->Belt.MutableSet.Int.mergeMany([|5, 4, 3, 2, 1|]); set->Belt.MutableSet.Int.toArray; /* [|1, 2, 3, 4, 5|] */

remove

let remove: (t, value) => unit;

Removes element from set. If element wasn't existed in set, value is unchanged.

RE
let s0 = Belt.MutableSet.Int.fromArray([|2,3,1,4,5|]); s0->Belt.MutableSet.Int.remove(1); s0->Belt.MutableSet.Int.remove(3); s0->Belt.MutableSet.Int.remove(3); s0->Belt.MutableSet.Int.toArray; /* [|2,4,5|] */

removeCheck

let removeCheck: (t, value) => bool;

removeMany

let removeMany: (t, array(value)) => unit;

Removes each element of array from set.

RE
let set = Belt.MutableSet.Int.fromArray([|1, 2, 3, 4|]); set->Belt.MutableSet.Int.removeMany([|5, 4, 3, 2, 1|]); set->Belt.MutableSet.Int.toArray; /* [||] */

union

let union: (t, t) => t;

Returns union of two sets.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); let s1 = Belt.MutableSet.Int.fromArray([|5,2,3,1,5,4|]); let union = Belt.MutableSet.Int.union(s0, s1); union->Belt.MutableSet.Int.toArray; /* [|1,2,3,4,5,6|] */

intersect

let intersect: (t, t) => t;

Returns intersection of two sets.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); let s1 = Belt.MutableSet.Int.fromArray([|5,2,3,1,5,4|]); let intersect = Belt.MutableSet.Int.intersect(s0, s1); intersect->Belt.MutableSet.Int.toArray; /* [|2,3,5|] */

diff

let diff: (t, t) => t;

Returns elements from first set, not existing in second set.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); let s1 = Belt.MutableSet.Int.fromArray([|5,2,3,1,5,4|]); Belt.MutableSet.Int.toArray(Belt.MutableSet.Int.diff(s0, s1)); /* [|6|] */ Belt.MutableSet.Int.toArray(Belt.MutableSet.Int.diff(s1,s0)); /* [|1,4|] */

subset

let subset: (t, t) => bool;

Checks if second set is subset of first set.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); let s1 = Belt.MutableSet.Int.fromArray([|5,2,3,1,5,4|]); let s2 = Belt.MutableSet.Int.intersect(s0, s1); Belt.MutableSet.Int.subset(s2, s0); /* true */ Belt.MutableSet.Int.subset(s2, s1); /* true */ Belt.MutableSet.Int.subset(s1, s0); /* false */

cmp

let cmp: (t, t) => int;

Total ordering between sets. Can be used as the ordering function for doing sets of sets. It compares size first and then iterates over each element following the order of elements.

eq

let eq: (t, t) => bool;

Checks if two sets are equal.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3|]); let s1 = Belt.MutableSet.Int.fromArray([|3,2,5|]); Belt.MutableSet.Int.eq(s0, s1); /* true */

forEachU

let forEachU: (t, [@bs] (value => unit)) => unit;

Same as forEach but takes uncurried functon.

forEach

let forEach: (t, value => unit) => unit;

Applies function f in turn to all elements of set in increasing order.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); let acc = ref([]); s0->Belt.MutableSet.Int.forEach(x => { acc := Belt.List.add(acc^, x) }); acc; /* [6,5,3,2] */

reduceU

let reduceU: (t, 'a, [@bs] (('a, value) => 'a)) => 'a;

reduce

let reduce: (t, 'a, ('a, value) => 'a) => 'a;

Applies function f to each element of set in increasing order. Function f has two parameters: the item from the set and an “accumulator”, which starts with a value of initialValue. reduce returns the final value of the accumulator.

RE
let s0 = Belt.MutableSet.Int.fromArray([|5,2,3,5,6|]); s0->Belt.MutableSet.Int.reduce([], (acc, element) => acc->Belt.List.add(element) ); /* [6,5,3,2] */

everyU

let everyU: (t, [@bs] (value => bool)) => bool;

every

let every: (t, value => bool) => bool;

Checks if all elements of the set satisfy the predicate. Order unspecified.

RE
let isEven = x => x mod 2 == 0; let s0 = Belt.MutableSet.Int.fromArray([|2,4,6,8|]); s0->Belt.MutableSet.Int.every(isEven); /* true */

someU

let someU: (t, [@bs] (value => bool)) => bool;

some

let some: (t, value => bool) => bool;

Checks if at least one element of the set satisfies the predicate.

RE
let isOdd = x => x mod 2 != 0; let s0 = Belt.MutableSet.Int.fromArray([|1,2,4,6,8|]); s0->Belt.MutableSet.Int.some(isOdd); /* true */

keepU

let keepU: (t, [@bs] (value => bool)) => t;

keep

let keep: (t, value => bool) => t;

Returns the set of all elements that satisfy the predicate.

RE
let isEven = x => x mod 2 == 0; let s0 = Belt.MutableSet.Int.fromArray([|1,2,3,4,5|]); let s1 = s0->Belt.MutableSet.Int.keep(isEven); s1->Belt.MutableSet.Int.toArray; /* [|2, 4|] */

partitionU

let partitionU: (t, [@bs] (value => bool)) => (t, t);

partition

let partition: (t, value => bool) => (t, t);
RE
let isOdd = x => x mod 2 != 0; let s0 = Belt.MutableSet.Int.fromArray([|1,2,3,4,5|]); let (s1, s2) = s0->Belt.MutableSet.Int.partition(isOdd); s1->Belt.MutableSet.Int.toArray; /* [|1,3,5|] */ s2->Belt.MutableSet.Int.toArray; /* [|2,4|] */

size

let size: t => int;

Returns size of the set.

RE
let s0 = Belt.MutableSet.Int.fromArray([|1,2,3,4|]); s0->Belt.MutableSet.Int.size; /* 4 */

toList

let toList: t => list(value);

Returns list of ordered set elements.

RE
let s0 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.toList; /* [1,2,3,5] */

toArray

let toArray: t => array(value);

Returns array of ordered set elements.

RE
let s0 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.toArray; /* [|1,2,3,5|] */

minimum

let minimum: t => option(value);

Returns minimum value of the collection. None if collection is empty.

RE
let s0 = Belt.MutableSet.Int.make(); let s1 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.minimum; /* None */ s1->Belt.MutableSet.Int.minimum; /* Some(1) */

minUndefined

let minUndefined: t => Js.undefined(value);

Returns minimum value of the collection. undefined if collection is empty.

RE
let s0 = Belt.MutableSet.Int.make(); let s1 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.minUndefined; /* undefined */ s1->Belt.MutableSet.Int.minUndefined; /* 1 */

maximum

let maximum: t => option(value);

Returns maximum value of the collection. None if collection is empty.

RE
let s0 = Belt.MutableSet.Int.make(); let s1 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.maximum; /* None */ s1->Belt.MutableSet.Int.maximum; /* Some(5) */

maxUndefined

let maxUndefined: t => Js.undefined(value);

Returns maximum value of the collection. undefined if collection is empty.

RE
let s0 = Belt.MutableSet.Int.make(); let s1 = Belt.MutableSet.Int.fromArray([|3,2,1,5|]); s0->Belt.MutableSet.Int.maxUndefined; /* undefined */ s1->Belt.MutableSet.Int.maxUndefined; /* 5 */

get

let get: (t, value) => option(value);

Returns the reference of the value which is equivalent to value using the comparator specifiecd by this collection. Returns None if element does not exist.

RE
let s0 = Belt.MutableSet.Int.fromArray([|1,2,3,4,5|]); s0->Belt.MutableSet.Int.get(3); /* Some(3) */ s0->Belt.MutableSet.Int.get(20); /* None */

getUndefined

let getUndefined: (t, value) => Js.undefined(value);

Same as get but returns undefined when element does not exist.

getExn

let getExn: (t, value) => value;

Same as get but raise when element does not exist.

split

let split: (t, value) => ((t, t), bool);

Returns a tuple ((smaller, larger), present), present is true when element exist in set.

RE
let s0 = Belt.MutableSet.Int.fromArray([|1,2,3,4,5|]); let ((smaller, larger), present) = s0->Belt.MutableSet.Int.split(3); present; /* true */ smaller->Belt.MutableSet.Int.toArray; /* [|1,2|] */ larger->Belt.MutableSet.Int.toArray; /* [|4,5|] */

checkInvariantInternal

let checkInvariantInternal: t => unit;

raise when invariant is not held